教程 | 仅需六步,从零实现机器学习算法!

2023-05-29 0 436

LizierData Optimal

电脑之心校对

参予:distinguished萌、路

责任编辑以fluctuation为例,如是说了从零同时实现电脑自学方式的要点和必要性。

教程 | 仅需六步,从零实现机器学习算法!

Cubzac写电脑自学演算法能赢得许多实战经验。当你最后顺利完成时,你会基克县,所以你明白这另一面到底出现了甚么。

很多演算法非常复杂,他们不从单纯的演算法已经开始,而要要从非常单纯的演算法已经开始,比如说双层fluctuation。

责任编辑以fluctuation为例,透过下列 6 个关键步骤鼓励你Cubzac写演算法:

对演算法有基本上的介绍

找出相同的学习天然资源

将演算法还原成块

从单纯的范例已经开始

用可靠的同时实现展开校正

写出你的操作过程

基本上介绍

不介绍基础知识,就无法Cubzac处理演算法。至少,你要能回答下列问题:

它是甚么?

它一般用在甚么地方?

甚么时候不能用它?

就fluctuation而言,这些问题的答案如下:

双层fluctuation是最基础的神经网络,一般用于二分类问题(1 或 0,「是」或「否」)。

它可以应用在一些单纯的地方,比如说情感分析(积极反应或消极反应)、贷款违约预测(「会违约」,「不会违约」)。在这两种情况中,决策边界都是线性的。

当决策边界是非线性的时候不能使用fluctuation,要用相同的方式。

教程 | 仅需六步,从零实现机器学习算法!

借助相同的自学天然资源

在对模型有了基本上介绍之后,就可以已经开始研究了。有人用教科书学得更好,而有人用视频学得更好。就我而言,我喜欢到处转转,用各种各样的天然资源自学。

如果是学数学细节的话,书的效果很好(参见:https://www.dataoptimal.com/data-science-books-2018/),但对于更实际的范例,我更推荐博客和 YouTube 视频。

下列列举了一些关于fluctuation不错的天然资源:

《统计自学基础》(The Elements of Statistical Learning),第 4.5.1 节(https://web.stanford.edu/~hastie/Papers/ESLII.pdf)

《深入理解电脑自学:从原理到演算法》,第 21.4 节(https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf)

博客

Jason Brownlee 写的《如何用 Python 从零已经开始同时实现fluctuation演算法》(https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/)

Sebastian Raschka 写的《双层神经网络和梯度下降》(https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html)

视频

fluctuation训练(https://www.youtube.com/watch?v=5g0TPrxKK6o)

fluctuation演算法的工作原理(https://www.youtube.com/watch?v=1XkjVl-j8MM)

将演算法还原成块

现在他们已经收集好了资料,是时候已经开始自学了。与其从头读一个章节或者一篇博客,不如先浏览章节标题和其他重要信息。写出要点,并试着概述演算法。

在看过这些资料之后,我将fluctuation分成下列 5 个模块:

初始化权重

将输入和权重相乘之后再求和

比较上述结果和阈值,计算输出(1 或 0)

更新权重

重复

接下来他们详细叙述每一个模块的内容。

1. 初始化权重

首先,他们要初始化权重向量。

权重数量要和特征数量相同。假设他们有三个特征,权重向量如下图所示。权重向量一般会初始化为 0,此例中将一直采用该初始化值。

教程 | 仅需六步,从零实现机器学习算法!

2. 输入和权重相乘再求和

接下来,我们就要将输入和权重相乘,再对其求和。为了更易于理解,我给第一行中的权重及其对应特征涂上了颜色。

教程 | 仅需六步,从零实现机器学习算法!

在他们将特征和权重相乘之后,对乘积求和。一般将其称为点积。

教程 | 仅需六步,从零实现机器学习算法!

最后结果是 0,此时用「f」表示这个暂时的结果。

3. 和阈值比较

计算出点积后,他们要将它和阈值展开比较。我将阈值定为 0,你可以用这个阈值,也可以试一下其他值。

教程 | 仅需六步,从零实现机器学习算法!

由于之前计算出的点积「f」为 0,不比阈值 0 大,因此估计值也等于 0。

将估计值标记为「y hat」,y hat 的下标 0 对应的是第一行。当然你也可以用 1 表示第一行,这无关紧要,我选择从 0 已经开始。

如果将这个结果和真值比较的话,可以看出他们当前的权重没有正确地预测出真实的输出。

教程 | 仅需六步,从零实现机器学习算法!

由于他们的预测错了,因此要更新权重,这就要展开下一步了。

4. 更新权重

他们要用到下面的等式:

教程 | 仅需六步,从零实现机器学习算法!

基本上思想是在迭代「n」时调整当前权重,这样他们将在下一次迭代「n+1」时得到新权重。

为了调整权重,他们需要设定「自学率」,用希腊字母「eta(η)」标记。我将自学率设为 0.1,当然就像阈值一样,你也可以用相同的数值。

目前本讲义主要如是说了:

教程 | 仅需六步,从零实现机器学习算法!

现在他们要继续计算迭代 n=2 时的新权重了。

教程 | 仅需六步,从零实现机器学习算法!

他们成功顺利完成了fluctuation算法的第一次迭代。

5. 重复

由于他们的演算法没能计算出正确的输出,因此还要继续。

一般需要展开大量的迭代。遍历数据集中的每一行,每一次迭代都要更新权重。一般将完整遍历一次数据集称为一个「epoch」。

他们的数据集有 3 行,因此如果要顺利完成 1 个 epoch 需要经历 3 次迭代。他们也可以设置迭代总数或 epoch 数来执行演算法,比如说指定 30 次迭代(或 10 个 epoch)。与阈值和自学率一样,epoch 也是可以随意使用的参数。

在下一次迭代中,他们将使用第二行特征。

教程 | 仅需六步,从零实现机器学习算法!

此处不再重复计算操作过程,下图给出了下一个点积的计算:

教程 | 仅需六步,从零实现机器学习算法!

接着就可以比较该点积和阈值来计算新的估计值、更新权重,然后再继续。如果他们的数据是线性可分的,那么fluctuation最后将会收敛。

从单纯的范例已经开始

他们已经将演算法还原成块了,接下来就可以已经开始用代码同时实现它了。

单纯起见,我一般会以非常小的「玩具数据集」已经开始。对这类问题而言,有一个很好的小型线性可分数据集,它就是与非门(NAND gate)。这是数字电路中一种常见的逻辑门。

教程 | 仅需六步,从零实现机器学习算法!

由于这个数据集很小,他们可以手动将其输入到 Python 中。我添加了一列值为 1 的虚拟特征(dummy feature)「x0」,这样模型就可以计算偏置项了。你可以将偏置项视为可以促使模型正确分类的截距项。

下列是输入数据的代码:

# Importing libraries

# NAND Gate

# Note: x0 is a dummy variablefor

 the bias term

#     x0  x1  x2

x = [[1.0.0.

],

     [1.0.1.

],

     [1.1.0.

],

     [1.1.1.

]]

y =[1.

,

    1.

,

    1.

,

    0.]

与前面的章节一样,我将逐步顺利完成演算法、编写代码并对其展开测试。

1. 初始化权重

第一步是初始化权重。

# Initialize the weights

import numpy as

 np

w = np.zeros(len(x[0

]))

Out:

0.  0.  0.]

注意权重向量的长度要和特征长度相匹配。以 NAND 门为例,它的长度是 3。

2. 将权重和输入相乘并对其求和

他们可以用 Numpy 轻松执行该运算,要用的方式是 .dot()。

从权重向量和第一行特征的点积已经开始。

# Dot Product

f = np.dot(w, x[0

])

print f

Out:

0.0

如他们所料,结果是 0。为了与前面的笔记保持连贯性,设点积为变量「f」。

3. 与阈值相比较

为了与前文保持连贯,将阈值「z」设为 0。若点积「f」大于 0,则预测值为 1,否则,预测值为 0。将预测值设为变量 yhat。

# ActivationFunctionz = 0.0if

 f > z:

    yhat = 1.else

:

    yhat = 0.

print yhat

Out:

0.0

正如他们所料,预测值是 0。

你可能注意到了在上文代码的注释中,这一步被称为「激活函数」。这是对这部分内容的更正式的描述。

从 NAND 输出的第一行可以看到实际值是 1。由于预测值是错的,因此需要继续更新权重。

4. 更新权重

现在已经做出了预测,他们准备更新权重。

# Update the weights

eta = 0.1w[0] = w[0] + eta*(y[0] – yhat)*x[0][0

]

w[1] = w[1] + eta*(y[0] – yhat)*x[0][1

]

w[2] = w[2] + eta*(y[0] – yhat)*x[0][2

]

print w

Out:

0.1  0.   0.

 ]

要像前文那样设置自学率。为与前文保持一致,将自学率 η 的值设为 0.1。为了便于阅读,我将对每次权重的更新展开硬编码。

权重更新顺利完成。

5. 重复

现在他们顺利完成了每一个关键步骤,接下来就可以把它们组合在一起了。

他们尚未讨论的最后一步是损失函数,他们需要将其最小化,它在本例中是误差项平方和。

教程 | 仅需六步,从零实现机器学习算法!

他们要用它来计算误差,然后看模型的性能。

把它们都放在一起,就是完整的函数:

import numpy as

 np

# Perceptron functiondef perceptron(x, y, z, eta, t):    

    Input Parameters:

        x: data set of input features

        y: actual outputs

z: activation function threshold

        eta: learning rate

        t: number of iterations

    
    # initializing the weights    w = np.zeros(len(x[0

]))      

    n = 0    # initializing additional parameters to compute sum-of-squared errors    yhat_vec = np.ones(len(y))     # vector for predictions    errors = np.ones(len(y))       # vector for errors (actual – predictions)    J = []                         # vector for the SSE cost function    while n < t: for i in xrange(0, len(x)): # dot product f = np.dot(x[i], w) # activation function if f >= z:                yhat = 1.            else

:                                   

                yhat = 0.

            yhat_vec[i] = yhat

            # updating the weights            for j in xrange(0

, len(w)):

                w[j] = w[j] + eta*(y[i]-yhat)*x[i][j]

        n += 1        # computing the sum-of-squared errors        for i inxrange(0

,len(y)):     

           errors[i] = (y[i]-yhat_vec[i])**2        J.append(0.5

*np.sum(errors))

    return

 w, J

现在已经编写了完整的fluctuation代码,接着是运行代码:

#     x0  x1  x2x = [[1.0.0.

],

     [1.0.1.

],

     [1.1.0.

],

     [1.1.1.

]]

y =[1.

,

    1.

,

    1.

,

    0.

]

z = 0.0eta = 0.1t = 50print “The weights are:”print perceptron(x, y, z, eta, t)[0

]

print “The errors are:”printperceptron(x, y, z, eta, t)[0

]

Out:

The weights are:

0.2 -0.2 -0.1

]

The errors are:

[0.51.51.51.00.50.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

]

他们可以看到,第 6 次迭代时误差趋近于 0,且在剩余迭代中误差一直是 0。当误差趋近于 0 并保持为 0 时,模型就收敛了。这告诉他们模型已经正确「自学」了适当的权重。

下一部分,他们将用计算好的权重在更大的数据集上展开预测。

用可靠的同时实现展开校正

到目前为止,我们已经找出了相同的自学天然资源、手动顺利完成了演算法,并用单纯的范例测试了演算法。

现在要用可靠的同时实现和他们的模型展开比较了。他们使用的是 scikit-learn 中的fluctuation(http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html)。

他们将按照下列几步展开比较:

导入数据

将数据分割为训练集和测试集

训练fluctuation

测试fluctuation

和 scikit-learn fluctuation展开比较

1. 导入数据

首先导入数据。你可以在这里(https://github.com/dataoptimal/posts/blob/master/algorithms from scratch/dataset.csv)得到数据集的副本。这是我创建的线性可分数据集,确保fluctuation可以起作用。为了确认,他们还将数据绘制成图。

从图中很容易看出来,他们可以用一条直线将数据分开。

import pandas as

 pd

import numpy as

 np

import matplotlib.pyplot as

 plt

df = pd.read_csv(“dataset.csv”

)

plt.scatter(df.values[:,1], df.values[:,2], c = df[3], alpha=0.8

)

text

教程 | 仅需六步,从零实现机器学习算法!

在继续之前,我先解释一下绘图的代码。我用 Pandas 导入 csv,它可以自动将数据放入 DataFrame 中。为了绘制数据,我要将值从 DataFrame 中取出来,因此我用了 .values 方式。特征在第一列和第二列,因此我在散点图函数中用了这些特征。第 0 列是值为 1 的虚拟特征,这样就能计算截距。这与上一节中的 NAND 门操作相似。最后,在散点图函数中令 c = df[3], alpha = 0.8 为两个类着色。输出是第三列数据(0 或 1),所以我告诉函数用列「3」给这两个类着色。

你可以在此处(https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html)找到更多关于 Matplotlib 散点图函数的信息。

2. 将数据分割成训练集/测试集

现在他们已经确定数据可线性分割,那么是时候分割数据了。

在与测试集相同的数据集上训练模型是很好的做法,这有助于避免过拟合。还有相同的方式,但是单纯起见,我要用一个训练集和一个测试集。首先打乱数据。

df = df.values  

np.random.seed(5

)

np.random.shuffle(df)

先将数据从 DataFrame 变为 numpy 数组。这样就可以更容易地使用 numpy 函数了,比如说 .shuffle。为了结果的可重复性,我设置了随机种子 (5)。顺利完成后,我试着改变随机种子,并观察结果会产生怎样的变化。接下来,我将 70% 的数据分为训练集,将 30% 的数据作为测试集。

train = df[0:int(0.7

*len(df))]

test = df[int(0.7

*len(df)):int(len(df))]

最后一步是分离训练集和测试集的特征和输出。

x_train = train[:, 0:3

]

y_train = train[:, 3

]

x_test = test[:, 0:3

]

y_test = test[:,3

]

我在这个范例中将 70% 的数据作为训练集,将 30% 的数据作为测试集,你们可以研究 k 折交叉校正等其他方式。

3. 训练fluctuation

他们可以重复使用之前的章节中构建的代码。

def perceptron_train(x, y, z, eta, t):    

    Input Parameters:

        x: data set of input features

        y: actual outputs

z: activation function threshold

        eta: learning rate

        t: number of iterations

    
    # initializing the weightsw = np.zeros(len(x[0

]))      

    n = 0    # initializing additional parameters to compute sum-of-squared errorsyhat_vec = np.ones(len(y))# vector for predictions    errors = np.ones(len(y))       # vector for errors (actual – predictions)    J = []                         # vector for the SSE cost function    while n < t:          for i in xrange(0, len(x)):                                           # dot product             f = np.dot(x[i], w)                                   # activation function             if f >= z:                yhat = 1.            else

:                                   

                yhat = 0.

            yhat_vec[i] = yhat

            # updating the weights            for j in xrange(0

, len(w)):             

w[j] = w[j] + eta*(y[i]-yhat)*x[i][j]

        n += 1        # computing the sum-of-squared errors        for i in xrange(0

,len(y)):     

errors[i] = (y[i]-yhat_vec[i])**2        J.append(0.5

*np.sum(errors))

    return

 w, J

z = 0.0eta = 0.1t = 50

perceptron_train(x_train, y_train, z, eta, t)

接下来看权重和误差项平方和。

w = perceptron_train(x_train, y_train, z, eta, t)[0

]

J = perceptron_train(x_train, y_train, z, eta, t)[1

]

print

 w

print

 J

Out:

[-0.5        -0.29850122  0.35054929

]

[4.50.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

]

现在权重对他们来说意义不大了,但是他们在测试fluctuation时还要再使用这些数值,和用这些权重比较他们的模型和 scikit-learn 的模型。

根据误差项平方和可以看出,fluctuation已经收敛了,这是他们预料中的结果,因为数据是线性可分的。

4. 测试fluctuation

现在是时候测试fluctuation了。他们要建立一个小的 perceptron_test 函数来测试模型。与前文类似,这个函数取他们之前用 perceptron_train 函数和特征计算出的权重的点积和激活函数展开预测。之前唯一没见过的只有 accuracy_score,这是 scikit-learn 中的评估指标函数。

将所有的这些放在一起,代码如下:

fromsklearn.metricsimport

 accuracy_score

w = perceptron_train(x_train, y_train, z, eta, t)[0

]

def perceptron_test(x, w, z, eta, t):

    y_pred = []

    for i in xrange(0, len(x-1

)):

        f = np.dot(x[i], w)   

        # activation function        if

 f > z:                               

yhat =1        else

:                                   

            yhat = 0

        y_pred.append(yhat)

    return

 y_pred

y_pred = perceptron_test(x_test, w, z, eta, t)

print “The accuracy score is:”print accuracy_score(y_test, y_pred)

得分为 1.0 表示他们的模型在所有的测试数据上都做出了正确的预测。因为数据集明显是可分的,所以结果正如他们所料。

5. 和 scikit-learn fluctuation展开比较

最后一步是将他们的fluctuation和 scikit-learn 的fluctuation展开比较。下面的代码是 scikit-learn fluctuation的代码:

from sklearn.linear_model import

 Perceptron

# training the sklearn Perceptronclf = Perceptron(random_state=None, eta0=0.1, shuffle=False, fit_intercept=False

)

clf.fit(x_train, y_train)

y_predict = clf.predict(x_test)

现在他们已经训练了模型,接下来要比较这个模型的权重和他们的模型计算出来的权重。

Out:

sklearn weights:

[-0.5        -0.29850122  0.35054929

]

my perceptron weights:

[-0.5        -0.29850122  0.35054929

]

scikit-learn 模型中的权重和他们模型的权重完全相同。这意味着他们的模型可以正确地工作,这是个好消息。

在结束之前还有一些小问题。在 scikit-learn 模型中,他们将随机状态设置为「None」所以没有打乱数据。这是因为他们已经设置了随机种子,所以已经打乱过数据,不用再做一次。还需要将自学率 eta0 设置为 0.1,和他们的模型相同。最后一点是截距。因为他们已经设置了值为 1 的虚拟特征列,因此模型可以自动拟合截距,所以不必在 scikit-learn fluctuation中打开它。

这些看似都是小细节,但是如果不设置它们的话,他们的模型就无法重复得到相同的结果。这是重点。在使用模型之前,阅读文档并介绍相同的设置有甚么作用非常重要。

写出你的操作过程

这是该操作过程的最后一步,可能也是最重要的一步。

你刚刚经历了自学、做笔记、Cubzac写演算法和用可靠同时实现展开比较的流程。不要浪费这些努力!

写出操作过程原因有二:

你要更深刻地理解这个操作过程,因为你还要将你学到的东西教给别人。

你要向潜在雇主展示这个操作过程。

从电脑自学库中同时实现演算法是一回事,Cubzac同时实现演算法是另一回事,它会给人留下深刻印象。

GitHub 个人资料是展示你所做工作的一种很好的方式。

总结

责任编辑如是说了如何从零已经开始同时实现fluctuation。这是一种在更深层次上自学演算法的好方式,而你还可以自己同时实现它。你在大多数情况下用的都是可靠的同时实现,但是如果你真的想要更深入地介绍另一面出现了甚么,从头同时实现演算法是很好的练习。教程 | 仅需六步,从零实现机器学习算法!

原文链接:https://www.dataoptimal.com/machine-learning-from-scratch/

责任编辑为电脑之心校对,

✄————————————————

加入机器之心(全职记者 / 实习生):[email protected]

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:[email protected]

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务